

%rh

Why, What & How

Dr. Jeremy Wingate Rotronic Instruments (UK) Ltd Wednesday, 14th January 2015 CIBSE Webinar

Introducing myself

Rotronic Instruments

Sales, training and consultancy role

Forest Research

Regenerating brownfield land through novel decontamination technologies

C-Cure Solutions Ltd

Joint founder of spin-out aimed at commercialising charcoal technologies

PhD from Surrey University

Decontamination of mining sites by novel charcoals

Contents

Why is Humidity important?

What is Humidity?

Measuring Humidity

Guidance for Control

Why is humidity important (in buildings)

1. Human comfort

- 2. Human Health
- 3. Conservation

WHY IS HUMIDITY IMPORTANT

1. Human Comfort

Sweating = Evaporation

↓ %rh makes you feel colder

Human comfort

- Temperature
 - » Radiated and Air
- Humidity
- Air velocity

WHY IS HUMIDITY IMPORTANT

2. Human Health

Dust Mites

- \downarrow 50%rh is fatal
- ↑ %rh is worst

Pathogen Survival in Air

- 40-60%rh most lethal for viruses
- \downarrow %rh is worst (winter)

Mould

个%rh & poor ventilation

WHY IS HUMIDITY IMPORTANT

3. Conservation

Condensation

- Mould & Rot
- Condensing on windows

Heritage & Storage

- Museum artefacts
- Records

Reliability

Maintaining equipment etc

4. Energy & Efficiency

WHY IS HUMIDITY IMPORTANT

Building Control

- Better measurements
- Intelligent control
- Sensitive products

Process Control

- Save time and money
- Ensure consistent product

Regulation

– Ever increasing...

What is humidity

- **1. States of matter**
- 2. Relative Humidity
- 3. Other psychrometric parameters

WHAT IS HUMIDITY?

1. States of Matter

Solid

 Definite shape and volume

Particles are closely packed and only vibrate

WHAT IS HUMIDITY?

2. States of Matter

Liquid

- Definite volume

Particles flow to take shape of container

WHAT IS HUMIDITY?

3. States of Matter

Gas (Water Vapour)

- Neither volume or shape

Particles will expand to fill a space

WHAT IS HUMIDITY?

4. Dalton's Law of Partial Pressures

In a gas mixture such as room air the total pressure can be expressed as...

P(water) = vapour pressure

WHAT IS HUMIDITY?

5. Composition of Air

WHAT IS HUMIDITY?

6. Composition of Air

WHAT IS HUMIDITY?

7. Recap!

- Water (H2O) in the gas phase is called VAPOUR
- Water vapour is transparent
- The amount of gas can be stated as a partial pressure
- Air typically holds ~1 4 % water vapour (10 40 mbar)
- AIR CAN ONLY HOLD A LIMITED AMOUNT OF WATER VAPOUR!

WHAT IS HUMIDITY?

8. Last but not least

- Hotter air can support **more water vapour**
- When air can hold no more water it is **SATURATED**
- The partial pressure at this exact point is called the **SATURATION VAPOUR PRESSURE**

WHAT IS HUMIDITY?

9. Psychrometric Charts

WHAT IS HUMIDITY?

10. Psychrometric Charts

WHAT IS HUMIDITY?

11. So... Relative Humidity

• The ratio of actual water vapour pressure against the saturation vapour pressure (in %)

l.e...

how much water vapour **is in the air** compared to how much water vapour **there could be in the air**

Relative humidity therefore is EXTREMELY temperature dependent!!

WHAT IS HUMIDITY?

12. Effect of temperature

WHAT IS HUMIDITY?

13. Other parameters

• Dew point

The temperature to which you need to cool a gas in order for saturation (condensation) to occur

- Mixing ratio (absolute humidity)
 Mass of vapour per unit mass of dry gas
 Dimensionless ratio although g/kg is often used
- Wet Bulb

The temperature to which a thermometer covered with a wet 'wick' will cool (due to evaporation)

Enthalpy

Of the dry air and evaporated water

Measuring Humidity

- **1. Overview of instruments**
- 2. Typical measurement problems
- 3. Best practice when taking measurements

MEASURING HUMIDITY

1. Historic methods...

Mechanical

Horse Hair / Cat Gut!

- Poor accuracy
- Poor repeatability
- Slow response

Psychrometer

Measurement of wet and dry bulb temperatures

- Still used in chamber control
- Requires regular cleaning and service
- Not reliable for building control

MEASURING HUMIDITY

2. Relative Humidity Sensors

Very widely used

Highly practical

Based around variations in electrical properties of polymers

- Resistive or Capacitive

Factory adjusted to provide %rh measurements

MEASURING HUMIDITY

3. Relative Humidity Sensors

• Pros

Fast response Robust Wide operating range Low cost

Cons

Stability and repeatability Temperature dependence Drift Contamination effects

MEASURING HUMIDITY

4. Typical Humidity Measurement Problems

- Temperature Effects
 - Calibration
 - Check instrument reflects the true application temperature
 - Stabilisation time
 - Stem conduction
 - Self heating
 - Temperature coefficients

MEASURING HUMIDITY

5. Typical Humidity Measurement Problems

- Pressure Effects
 - Does not effect %rh
 - Some parameters are (eg. dew point)
- Drift
 - > ALL humidity sensors drift over time
 - Varies
 - Manufacturer
 - Filters
 - Application
 - Regular calibration

MEASURING HUMIDITY

6. Typical Humidity Measurement Problems

- Contamination
 - Particulate deposits
 - Become part of the sensor
 - Chemical attack
 - Solvents
 - Atmospheric pollution
 - Filter maintenance
 - Correct filters
 - Regular replacement

MEASURING HUMIDITY

7. Best Practice Notes

• Use quality reference instruments when commissioning with traceability to national standards

 Ensure good insertion and seal when measuring ducts

MEASURING HUMIDITY

8. Best Practice Notes

- Ensure suitable stabilisation time
 - Log 30 minutes of data
 - Measure until stable
 - Consider both °C and %rh
- Ensure regular calibration of references and store carefully
- Loop check analogue systems for other errors

Controlling Humidity

1. Sensor locations

2. A note on accuracy

CONTROLLING HUMIDITY

1. Sensor Locations

• Representative location with good air movement

- Install duct sensors into air flow (reduces stem conduction)
- Immerse sensors as much as possible

CONTROLLING HUMIDITY

2. Sensor Locations

• Consider using temperature independent parameters

Desired condition = 50%rh @ 23 °C = 8.74 g/kg (mixing ratio)

Control hum and dehum system to 8.74 g/kg (independent of temp) Ensure room temp is 23 °C and %rh will be as required

- Outside air sensors
 - North facing wall
 - Mounted in a weather shield
 - Away from other heat / humidity sources

CONTROLLING HUMIDITY

3. A note on accuracy

- Always consider accuracy and drift (what is best long term?)
- Measuring humidity is hard (3333x worse than temperature)
 - UK National Standards; ±0.1-1.0%rh vs ±0.0003 °C
- The very best %rh sensors claim ± 0.5%rh...±1.0%rh
- Temperature effects can be huge (~5%rh / 1.0°C error)
- As such close control for humidity is not easy!

Don't forget...

Measuring humidity is all about temperature

Precision humidity measurement & control is not easy

Calibration is the only way to confirm performance

CIBSE Article on NPL Project

Rotronic White Paper on Modern Monitoring and Control

Thank You!

Any questions?

Jeremy Wingate BSc MBA PhD jeremyw@rotronic.co.uk 01293 843701 www.rotronic.co.uk #rotronicuk

Instruments – UKAS Calibration – Training – Consultancy

