International Centre for Indoor Environment and Energy Do European standards for indoor air quality take into account outdoor air quality? Professor Bjarne W. Olesen, PhD, **Department of Civil Engineering Technical University of Denmark** www.ie.dtu.dk

Global impact on people

In developing regions **5000 persons die per** day due to poor IAQ

Achieving Excellence in Indoor Environmental Quality

Physical factors

- Thermal Comfort
- Air quality (ventilation)
- Noise-Acoustic
- Illumination
- Personal factors
 - Activity
 - Clothing
 - Adaptation
 - Expectation
 - Exposure time

STANDARDS IAQ

ASHRAE 62.1 and 62.2 -2013

- Ventilation and indoor air quality

EN15251

 Indoor environmental input parameters for design and assessment of energy performance of buildings- addressing indoor air quality, thermal environment, lighting and acoustic

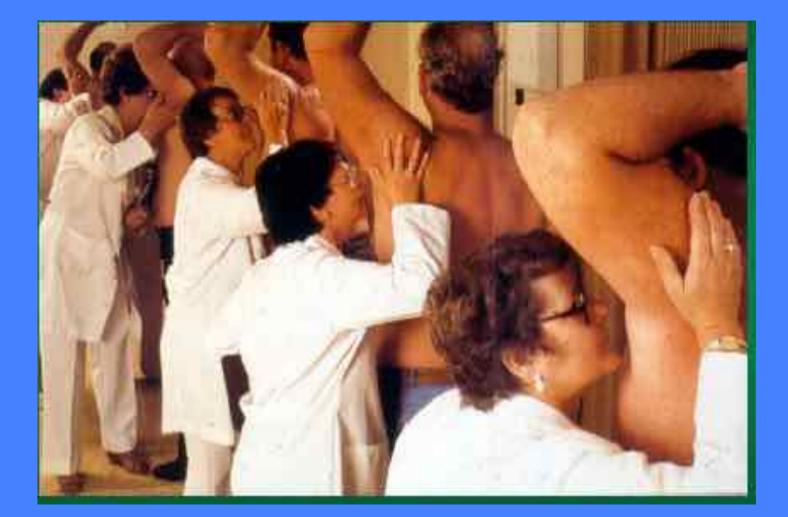
• EN 13779

 Ventilation for non-residential buildings - performance requirements for ventilation and room-conditioning systems

International Standards Indoor Environmental Quality

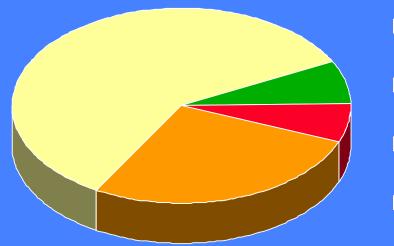
prEN 16789-1 (revision EN15251) and ISO DIS 17772

- Indoor environmental input parameters for the design and assessment of energy performance of buildings.
- DTR 16789-2 and ISO TR 17772:
 - Guideline for using indoor environmental input parameters for the design and assessment of energy performance of buildings.


Categories

Cate- gory	Explanation
I	High level of expectation and also recommended for spaces occupied by very sensitive and fragile persons with special requirements like some disabilities, sick, very young children and elderly persons, to increase accessibility.
II	Normal level of expectation
III	An acceptable, moderate level of expectation
IV	Low level of expectation. This category should only be accepted for a limited part of the year

CRITERIA FOR INDOOR AIR QUALITY ~VENTILATION RATES


- COMFORT (Perceived Air Quality)
- HEALTH
- PRODUCTIVITY
- ENERGY

Human Bioeffluents

European Audit Project to Optimise Indoor Air Quality and Energy consumption in Office Buildings

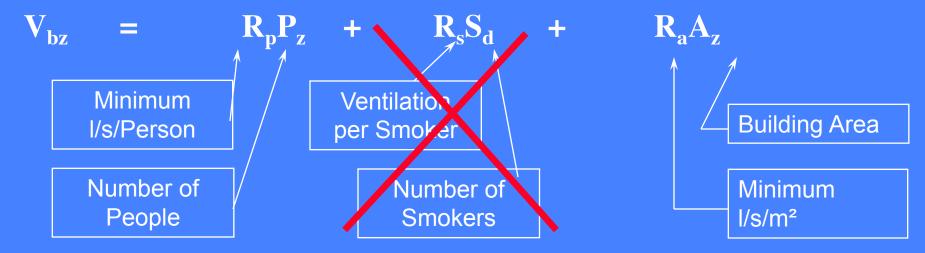
Sensory pollution load- perceived air quality

Materials and activities
 Outdoor air

Occupants

Ventilation system

Tobacco Smoke


Concept for calculation of design ventilation rate

Breathing Zone Outdoor Airflow

People Component

Total ventilation rate

$$q_{tot} = n \cdot q_p + A_R \cdot q_B$$

$q_{supply} = q_{tot} / \varepsilon_v$

- Where
- ε_v = the ventilation effectiveness (EN13779)
- q_{supply} = ventilation rate supplied by the ventilation system
- q_{tot} = total ventilation rate for the breathing zone, I/s
- *n* = design value for the number of the persons in the room,
- q_p = ventilation rate for occupancy per person, I/s, pers
- A_R = room floor area, m²
- q_B = ventilation rate for emissions from building, I/s,m²

HEALTH CRITERIA FOR VENTILATION

Minimum 4 l/s/person

Basic required ventilation rates for diluting emissions (bio effluents) from people for different categories

Category	Expected Percentage Dissatisfied	Airflow per non- adapted person I/(s.pers)
I	15	10
II	20	7
Ш	30	4
IV	40	2,5*

*The total ventilation rate must never be lower than 4 l/s per person ASHRAE Standard 62.1 : Adapted persons 2,5 l/s person (Cat. II)

Design ventilation rates for diluting emissions from buildings

Category	Very low polluting building l/(s m ²)	Low polluting building I/(s m ²)	Non low- polluting building l/(s m ²)
l	0,5	1,0	2,0
II	0,35	0,7	1,4
III	0,2	0,4	0,8
IV	0,15	0,3	0,6
Minimum total ventilation rate for health	4 l/s person	4 I/s person	4 l/s person

Example on how to define low and very low polluting buildings

SOURCE	Low emitting products for low polluted buildings	Very low emitting products for very low polluted buildings
Total VOCs TVOC (as in CEN/TS 16516)	< 1.000 µg/m³	< 300 µg/m³
Formaldehyde	< 100 µg/m ³	< 30 µg/m³
Any C1A or C1B classified carcinogenic VOC	< 5 µg/m³	< 5 µg/m³
R value (as in CEN/TS16516)	< 1.0	< 1.0

Example of design ventilation air flow rates for a single-person office of 10 m² in a low polluting building (un-adapted person)

Cate- gory	Low- polluting building I/(s*m ²)	Airflow per non- adapted person I/(s*person)		design ventilation or the room I/(s*person)	n air flow I/(s* m²)
I	1,0	10	20	20	2
П	0,7	7	14	14	1,4
Ш	0,4	4	8	8	0,8
IV	0,3	2,5	5,5	5,5	0,55

Specific Pollutans

$$G_{h} = 1$$

$$Q_{h} = ------ \cdot -----$$

$$C_{h,i} - C_{h,o} = \varepsilon_{v}$$

Eq (2)

where:

 $\begin{array}{c} Q_h\\ G_h\\ C_{h,i}\\ C_{h,o}\\ \epsilon_v \end{array}$

is the ventilation rate required for dilution, in litre per second;
is the pollution load of a pollutant, in micrograms per second;
is the guideline value of a pollutant, see Annex B6, in micrograms per m³;
is the supply concentration of pollutants at the air intake, in micrograms per m³;
is the ventilation effectiveness

NOTE. $C_{h,i}$ and $C_{h,o}$ may also be expressed as ppm (vol/vol). In this case the pollution load G_h has to be expressed as l/s.

Pollutant	WHO Indoor Air Quality guidelines 2010	WHO Air Quality guidelines 2005
Benzene	No safe level can be determined	-
Carbon monoxide	15 min. mean: 100 mg/m ³ 1h mean: 35 mg/m ³ 8h mean: 10 mg/m ³ 24h mean: 7 mg/m ³	-
Formaldehyde	30 min. mean: 100 <i>μ</i> g/m³	-
Naphthalene	Annual mean: 10 µg/m³	-
Nitrogen dioxide	1h mean: 200 μg/m³ Annual mean: 40 mg/m³	-
Polyaromatic Hydrocarbons (e.g. Benzo Pyrene A B[a]P)	No safe level can be determined	-
Radon	100 Bq/m ³ (sometimes 300 mg/m ³ , country-specific)	-
Trichlorethylene	No safe level can be determined	-
Tetrachloroethylene	Annual mean: 250 μg/m³	
Sulfure dioxide	-	10 min. mean: 500 μg/m³ 24h mean: 20 mg/m³
Ozone	-	8h mean:100 <i>µ</i> g/m³
Particulate Matter PM 2,5	-	24h mean: 25 μg/m³ Annual mean: 10 μg/m³
Particulate Matter PM 10	-	24h mean: 50 μg/m ³ Annual mean: 20 μα/m ³

WHO guidelines values for indoor and outdoor air pollutants

Filtration and air cleaning

- The influence of position of outdoor air intakes, filtration and air cleaning shall be considered. (DTR 16798-4, DTR 16798-2)
- If filtration and air cleaning is used the following points shall be considered:
 - Reducing the amount of airborne pollutants (pollens, molds, spores, particles, dust) from the outdoor air intake by circulating the air through a filter.
 - Circulating secondary air through a filter or other air cleaning technology to reduce the amount of pollutants in the air
 - Reduce the concentration of odors and gaseous contaminants by circulating the secondary air or recirculating the return air (gas phase air cleaning)
 - » Note: Design guidelines on air cleaning and filtration are given in prEN 16798-3 and ISO DIS 16814. How to partially substitute outside air by air cleaning is described in DTR 16798-2

Ventilation Systems

prEN16798-3

 Energy performance of buildings - Part 3: Ventilation for nonresidential buildings — Performance requirements for ventilation, air conditioning and room-conditioning systems; (revision of EN 13779)

DTR 16798-4

 Ventilation for non-residential buildings — Performance requirements for ventilation, air conditioning and room conditioning systems (Revision EN 13779)
 Technical Report

OUTDOOR AIR

- In the process of system design, consideration needs to be given to the quality of the outdoor air around the building or proposed location of the building. In the design, there are two main options for mitigating the effects of poor outdoor air on the indoor environment:

 - \Box apply some form of air cleaning
 - NOTE 1 See TR 13779 for further information about these options.

Table 6 — Classification of outdoor air ((ODA)
---	-------

Category	Description
ODA 1	Outdoor air which may be only temporarily dusty (e.g. pollen)
ODA 2	Outdoor air with high concentrations of particulate matter and/or gaseous pollutants
ODA 3	Outdoor air with very high concentrations of gaseous pollutants and/or particulate

Air Filtration

Outdoor air	Supply air cla	ass		
quality	SUP 1	SUP 2	SUP 3	SUP 4
ODA (P) 1	88%*	80%*	80%*	80%*
ODA (P) 2	96%*	88%*	80%*	80%*
ODA (P) 3	99%*	96%*	92%*	80%*

Gas Filtration

Table 18 — Required application of Gas Filter as compliment to particle filtration based on gaseous outdoor air quality

quality	SUP 1	SUP 2	SUP 3	SUP 4
ODA (G)1	recommended			1
ODA (G) 2	required	recommended		
ODA (G)3	required	Required	recommended	-

RESIDENTIAL

Table B2.1.4-1 Criteria based on pre-defined ventilation air flow rates: Total ventilation (1), Supply air flow (2) and (3) supplemented by exhaust air flow.

Cate gory	Total ver including infiltration (1)	air	Supply air flow per. person (2)	Supply based on IAQ for persons (3)	air flow perceived adapted	Supply air flow for bedrooms (4)	Exhaust air f peak or b demand	iow oost flow I/s	for high
	l∕s,m²	ach	l/s*per	q _p I/s*per	q _B I/s,m²	l/s per person	Kit-chen (3a)	Bath- rooms (3b)	Toilets (3c)
1	0,49	0,7	10	3,5	0,25	10	28	20	14
11	0,42	0,6	7	2,5	0,15	8	20	15	10
	0,35	0,5	4	1,5	0,1	4	14	10	7
IV*	0,23	0,4				2,5*	10	6	4

NOTES

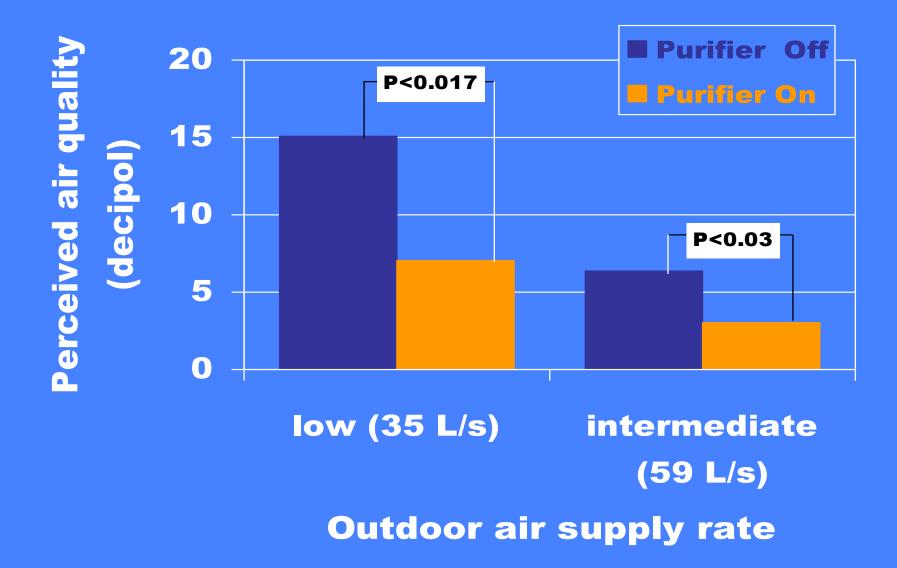
Column 3 and 4: The ventilation air flow rates must be available when the rooms are occupied. The design can take into account that not all bedrooms are occupied at the same time, e.g. during daytime

The number of persons in bedroom depends on the size according to design criteria and building regulations

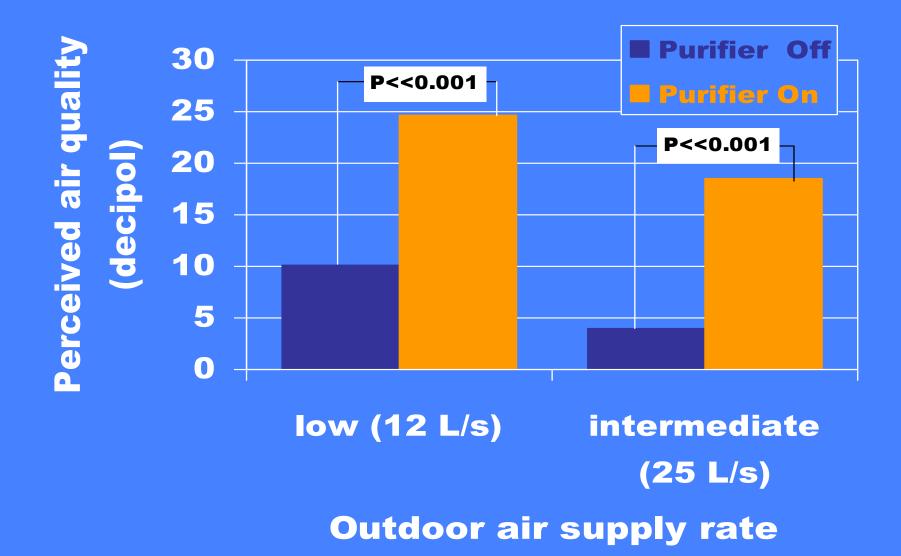
Sensory Pollution Load

Sensory load

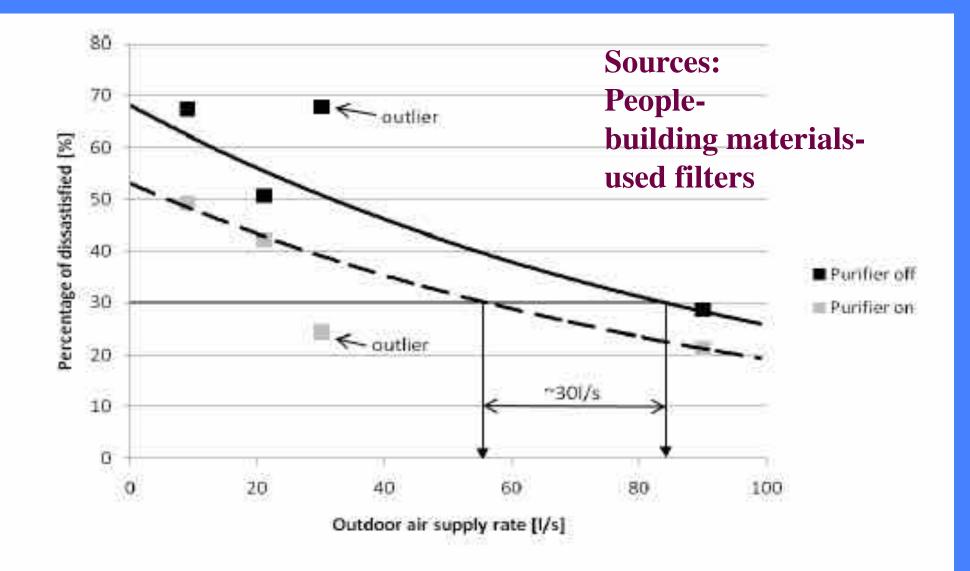
Source: Pejtersen et al, 1989


Trends regarding ventilation

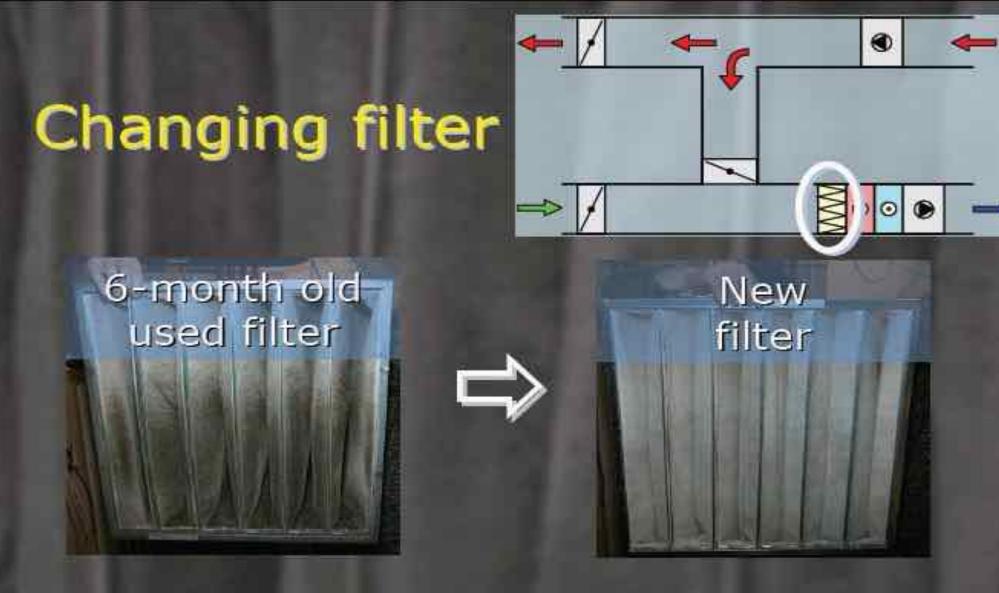
- Increasing use of air cleaning
 - Filtration
 - Gas phase air cleaning
- Personalized systems for better comfort and energy savings
- Demand control ventilation
 - Occupant precense
 - $-CO_2$ sensors
 - Artificial nose


Gas phase air purification technologies

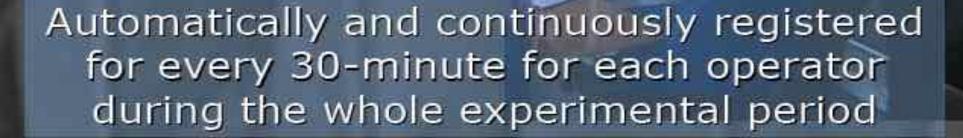
- Photo-catalytic oxidation (PCO)
- Ozone oxidation
- Thermal catalytic oxidation (TCO)
- Plasma oxidation
- Botanic filtration
- Sorption filtration

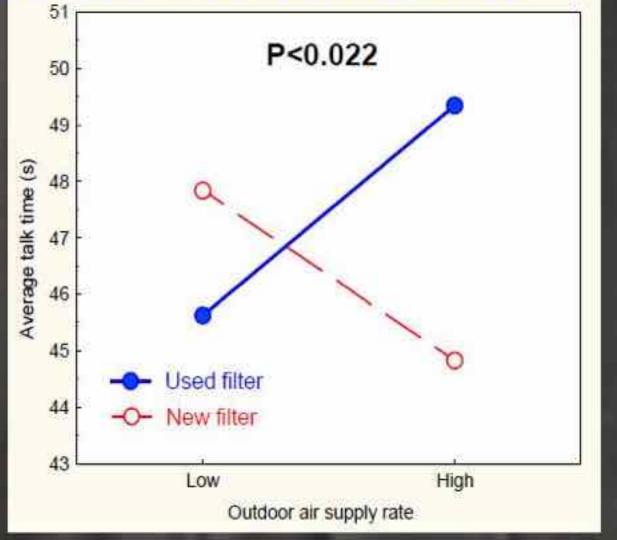

Results: Bldg mat, PCs, filters

Results: Human bio effluents


Effect of air cleaning on perceived Air Quality

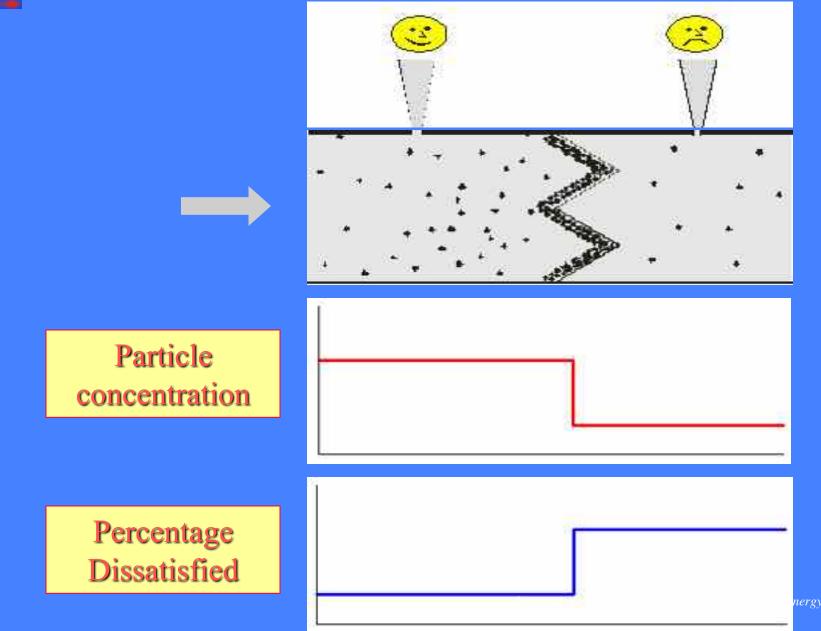
Field study


Intervention study in a callcenter with 24 workstations

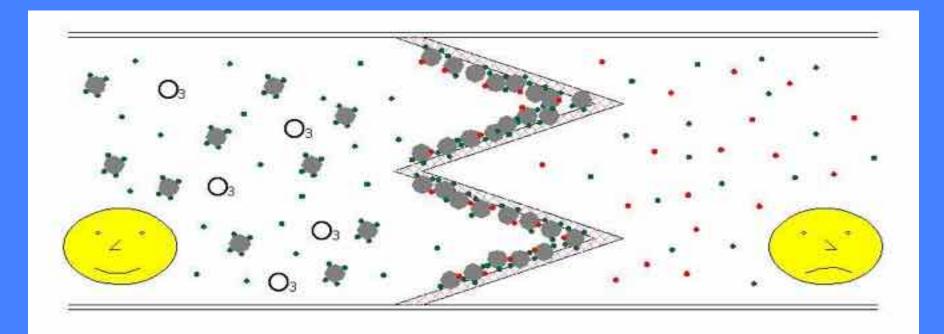

Synthetic-fibre coarse filter class G3

Measurements of performance

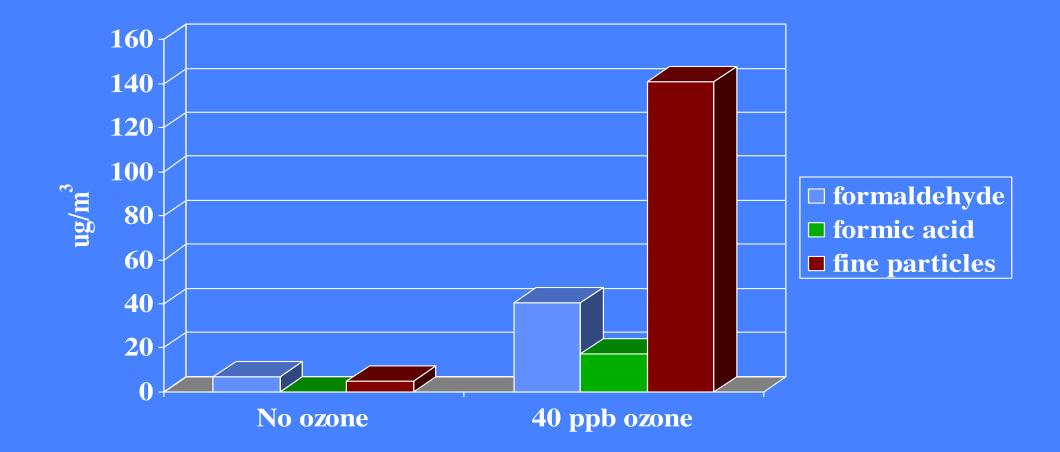
Number of calls
 Talk-time
 Length of pauses



Operator performance

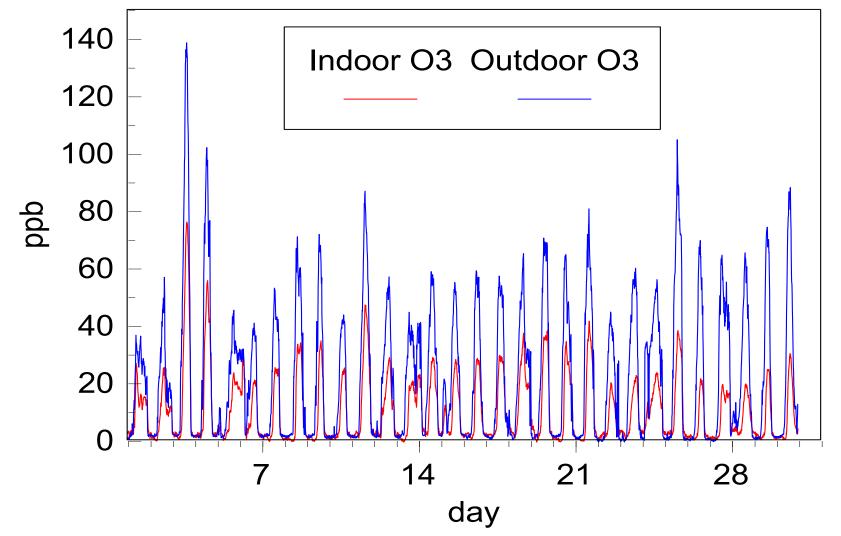


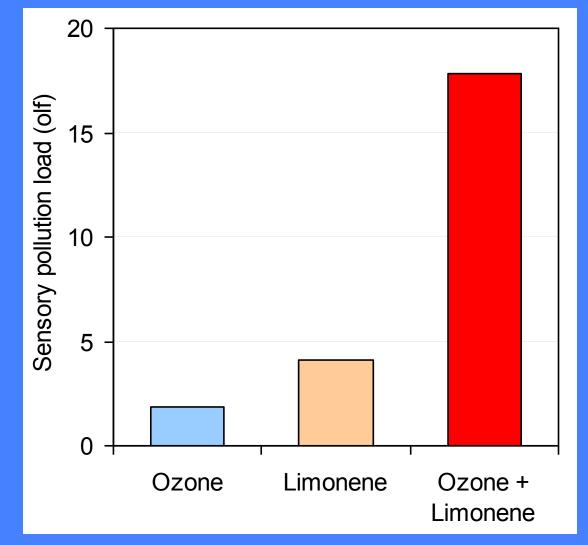
Why do filters pollute ?



Hypotheses

SVOCs sorbed
on particlesOxidized
SVOCsSVOCs in gas phaseUnreacted SVOCs


Mixture of 23 VOCs (including d-limonene and α-pinene)



Indoor Chemistry

 Indoor chemistry can influence the kind and concentration of organic chemicals in indoor air

Burbank April, 1993

The sensory pollution load in an office where either ozone (15 ppb) or limonene (83 ppb) were present separately or both ozone and limonene (15 ppb+83 ppb respectively) were mixed in the office air (Tamás et al., 2005); the increased sensory pollution load is due to the presence of reaction products in the office air.

THANK YOU

International Centre for Indoor Environment And Energy